RSS

Tag Archives: carbon

Phlogiston, bloodletting, and the four humors

Phlogiston – You know, the stuff that’s in stuff. The burny stuff that’s released by fire?Screen Shot 2016-06-09 at 5.20.34 PM.png

Not familiar? Well, that’s because it’s isn’t a thing at all – anymore.

Screen Shot 2016-06-14 at 10.04.59 PMGeorg Ernst Stahl (1659–1734) lived in a complicated time for science. It was just being brought out of the dark ages in many ways and much of what he studied sounds completely foreign and backward to modern ears.

Primarily, Stahl studied the distinction between living and dead material. This vital force was supposedly the anima, or spirit, of a living thing, that gives it ‘agency.’ This was the same force, known as vitalism, that even Louis Pasteur believed was necessary for enzymatic reactions to proceed. Pasteur wasn’t wrong about much, but this one time he fell victim to the prevailing zeitgeist.

Stahl also proposed, in his De motu tonico vitali, that there was a ‘tonic motion’ in things that needed to be permitted for proper circulation of blood. When inflammation or other obstructions occurred, the problem was that this tonic motion was being blocked. One cure for these obstructions was the practice of bloodletting, which addressed the most easily managed of the four humors and was used to treat just about everything.

Although this may sound like a criticism of  Stahl, he was highly regarded as a professor and physician in his time and his work was critical in that it added an experimental element to scientific work. As a testimony to his reputation, he served as physician to both Duke Johann Ernst of Sachsen-Weimar and King Freiderich Wilhelm I of Prussia.

To get to the point here, he proposed the existance of a substance, Phlogiston, that was a component of many things that was released when that thing was burnt. Phlogiston was colorless, odorless, and weightless and it spoke to the question why something, once burnt, could not be burnt again. Ash, for example, was completely deflogistated matter. It contained no more phlogiston and was therefore impervious to further burning.

Additionally, air could fill with phlogiston, becoming saturated. When this happened, the principle of diffusion Screen Shot 2016-06-10 at 4.26.42 PMwould kick in to prevent further diffusion of phlogiston out of a substance. Recall that the basic principle of diffusion is that substances go from regions of high concentration to regions of low concentration (Actually, the random movement of particles will continue unendingly. The apparent result of this movement is that a non-random, concentrated source of particles becomes a random distribution that is effectively uniform. Actually, the particles are still moving, but the random distribution appears stable).

It sets up a simple equation for combustion of any (flamable) thing like this:

Phlogiston(s) + heat + something else –> Phlogiston(g) + ash + energy

Actually, it’s a great hypothesis. It does a servicable job in predicting the behavior of a combustible material in a simple system.  Imagine that phlogiston = carbon. This phlogiston / carbon exists in different forms around us: a waxy hydrocarbon chain in the candle, CO2 in the air, and as the backbone of sugars. However, it fails to recognize a couple of important things too: Mass doesn’t just disappear, the CO2 does have mass, of course, but it’s harder to appreciate. Also, flames don’t necessarily go out because of too much CO2 in the surrounding air, but because of a lack of something else, Oxygen.

However, it does fail to recognize a couple of important aspects. First, mass doesn’t just disappear during combustion. What remains as ash is lighter than the starting material.  CO2 is released and despit that fact that it is harder to appreciate, it does have mass. Second, flames don’t necessarily go out because of too much CO2 in the surrounding air, but because of a lack of something else.

preistly making o2It was by following in Stahl’s footsteps that Joseph Priestley discovered oxygen. Priestley had a knack for studying gasses. He was good at capturing and manipulating them in a controlled way. The figure to the left is an apparatus  of a type common to Priestly’s work, where a substance is heated (e.g., KClO3) to boil off a gas (e.g. O2) in a way that the gas displaces water in an inverted flask so that it may be captured in pure form.

Priestley found that oxygen purified in this way could refresh deflogistated (-perhaps, phlogistated?)26844_lg air allowing it to support combustion once more. It could also rescue an animal from suffocating in a bell jar (something that Preistley did enough that is sounds almost like a hobby of his.) The idea that air was composed of numerous components was a new one, and already Preistley was purifying these substances and demonstrating their requirement for life and for chemical reactions.

So, how does this change the way we needed to think about phlogiston?

It explains that mass doesn’t just disappear when burnt. It goes somewhere, it becomes something else (CO2). It changes the requirement for combustion from one considering the diffusion of matter out of one thing and into the air into a chemical conversion of something into something else.

Instead of the Phlogiston equation, we have the combustion reaction (either proceeding until completion or not):

Screen Shot 2016-06-12 at 8.51.00 PM

Phlogiston might still fit in as carbon if we are insistant, but now we see that something else is required as well: Oxygen.

Flames don’t necessarily go out because of too much Phlogiston (CO2) in the surrounding air, but because of a lack of something else, Oxygen.

The importance of Stahl’s work was not that he was right or wrong, but that Stahl was attempting to bring rigor and experimentation into science. In medicine and chemistry, Stahl believed in taking an empirical approach to his work. Ultimately, this was a stepping stone from the pseudoscience of alchemy to the real science of chemistry.

chemistry_alchemy

:istr makes a nucleophilic attack on chemy, resulting in the leaving group (Al) to leave and precipitate out.

 

 

 

 
Leave a comment

Posted by on June 14, 2016 in Uncategorized

 

Tags: , , , , , ,

The age of things – radiometric dating (again)

Image

The most famous ship that didn’t sink

I feel the need to re-iterate my explanation of carbon dating. We had a recent quiz which was entirely based on carbon dating, that my students have cleverly manipulated into a warning flare to alert me to the fact that we need to slow down and be sure that everyone’s aboard before the ship goes sailing away.

Earlier, I posted this example of radiocarbon dating as a simplified exercise in determining how long it has been since a carbon-based organism was alive.

Here, I’m going to just walk through our recent quiz:

You are involved in an archaeological dig site of prehistoric humans.  You find some samples from several of the people you suspect lived in the site and do radiometric dating.

1. Assuming an original steady state ratio of   1 part 14C: 100 parts 12C, and a half-life of Carbon-14 of 5700 years, how old is the site if your samples have a 14C:12C ratio of 1:800?

What’s your starting point? —- an original steady state ratio of   1 part 14C: 100 parts 12C. This means, when this archeological site had people living in it, they had a 1:100 carbon ratio. This comes from their continued input of carbon sources from their environment all containing that 1:100 ratio.

what’s the endpoint? —- your samples have a 14C:12C ratio of 1:800. Over time, the radioactive carbon in these remains has decayed, so there is less 14C over time. However, the amount of 12C remains constant because this isotope of carbon is stable.

 

how do we get from 1:100 –> 1:800? the half-life of Carbon-14 of 5700 years. Every 5700 years, half of the 14C decays. After the first half-life (5700 years), the original ratio of 1 part 14C: 100 parts 12C changes. Now we have 0.5 part 14C: 100 parts 12C   –or–  1 part 14C: 200 parts 12C. 

    follow this for two more half-lives… 

            1:200 becomes…

1:400, which becomes…

1:800.

How many half-lives is that?           

        count the arrows (each is a half-life)  1:100 –> 1:200 –> 1:400 –> 1:800

        3 half-lives x 5700 yrs / half-life =    17,100 years.

 

2. in 5700 another years, what will the 14C:12C ratio be?

Tack on one more half-life…   1:800  –> 1:1600

3. What is another method that you might employ to determine the age of this site ?

Here, I was asking for any answer that is consistent with the number of mechanisms we discussed that have been used to estimate time. I announced during the quiz that you could give any answer here, it did not matter whether that method was consistent with dating a sample of this approximate age.

Many of you chose dendrochronology – the means of using a daisy-chain of tree rings to walk back through time. This would require that someone has done the background work for this in the area and a sample of wood from the site from which tree rings could be identified… perfect.

You could have said, look at the geological strata if the site. – or mentioned that Paleomagnetism may also enable some reference for dating of rocks (despite the fact that these methods are likely out of scale for a timeperiod of 17,000 years.)

Extra Credit – 

  1. During the dig, one of your students falls down a well and is left for dead. Given the increased carbon in the atmosphere due to burning fossil fuels, if a future archeologist were to try to date this student’s remains assuming the original ratio of isotopes given in question #1, would this scientist overestimate or underestimate the time since your student died?

This question requires you to remember that fossil fuels are the result of very ancient carbon sources. because of their age, they are entirely depleted of 14C. When these fuels are burned, Imagecombustion results in CO2 (all of which is  12C) entering the atmosphere. This would skew the 14C:12C ratio in favor of 12C. Therefore, out student would have a ratio of greater than 1:100 – perhaps 1:200 as his baseline at time of death. would this scientist overestimate or underestimate the time since your student died? They would overestimate – in fact, the student appears to be 5700 years old right away.

2. What would the atmospheric carbon ratio be today if these scientists thought that your student died at the same time as the other prehistoric humans?

1:800 – i.e. the student’s ratio of carbon isotopes would have to be the same as those found in the prehistoric remains. Quite a co-incidence!

 

I hope these answers help you to understand the concept here and how to calculate answers for some basic problems.

 
Leave a comment

Posted by on April 15, 2013 in Uncategorized

 

Tags: , , , , , , , ,

How Old (Con’t)

From 1912 until about 1953, biologists interested in human evolution were being duped.

One hundred years ago, Charles Dawson presented his new find, a transitional fossil of an organism that plainly appeared part human and part ape, bearing a number of hallmarks of being a ‘missing link’ between modern man and early ancestors.. The fossil, found in Piltdown, England and was dubbed Eoanthropus dawsoni and was accepted as a welcome addition to the record of humanity’s existence.

It was just what was expected.

Piltdown_gang_(dark)

The Piltdown Gang

Expectations make fertile soil for a hoax.  Darwin’s work predicted such a find would be made. The question was merely, who would find it? What would it look like? And how famous would this make the man who discovered it?

“Sir Arthur Keith, famous British paleontologist, spent more than five years piecing together the fragments of what he called a ‘remarkable’ discovery. He said the brain case was ‘primitive in some respects but in all its characteristics distinctly human.'”1

Over time, When the skull fragments of E. dawsoni, commonly called Piltdown man, were examined, doubts were raised as to whether it represented a single organism or several, which just happened to become mixed together in the unearthing. But these doubts took decades to culminate into action.

The best way to address the question was to determine whether the several pieces of skull were at least contemporaries of one another. They could still be a jumble, but it was a start. To assess the age of the fragments, fluorine dating was done. This method is used to determine the amount of time that a sample has been buried underground. The principle is that groundwater contains fluorine and the longer a sample remains buried, the more fluorine will become absorbed into the sample. This testing confirmed that the samples could still have come from the same source, but that they were both considerably more recent that initially suggested.2

708px-Pildown_manFollowing this analysis, Carbon dating gave a more accurate age of the samples themselves indicating that they were both quite recent, but not from the same organism. Once this data came in, the house of cards fell and a number of other observations came to light confirming the hoax.

What does this teach us?

1. Science is difficult business. When everyone is working honestly, it is difficult. When people are willfully trying to subvert the process, it can take years to remedy. (I immediately think of the damage done by Andrew Wakefield’s fraudulent 1998 Lancet paper and subsequent work that undermined the public’s trust in vaccines)

2. Science is self-correcting. Again, this can take time, but eventually, mistakes are worked out and our understanding of the world gradually improves.

3. People are people. With an obvious prize, people sometimes make their own luck.

4. No single experiment will always give accurate data. Extra-ordinary claims require extra-ordinary evidence.

References

1. “The Piltdown Man Discovery: Unveiling of a Monolith Memorial”Nature 142, 196-197 (30 July 1938) | doi:10.1038/142196a0

2. “Relative Dating of the Piltdown Skull” Kenneth P. Oakley, Advancement of Science 1950

 
1 Comment

Posted by on December 20, 2012 in Uncategorized

 

Tags: , , , , , , , ,