RSS

Tag Archives: species

I love having a blackboard in my home office

In class this week we are discussing genes alleles homologous genes between species and pseudogenes. In order to organize my thoughts (to the extent that I can), I sketched out this diagram to model the flow of information from DNA into proteins and tie this together with the idea that DNA undergoes mutations from time to time and that these mutations are the source of new alleles in the population.

Image

 1.Recall the central dogma

DNA –> RNA –> Protein

Information flows from the DNA out of the nucleus giving rise to proteins that make up the body and do its work. For EVERY gene, you have two alleles, one from mom, one from dad. We tend to only talk about the ones that give us distinct traits that we can see from the outside, but every gene these.

2. Mutations are altered forms leading to altered function

All genes are subject to mutations. Mutations may change the protein that the gene encodes or not. In cases when it does change the protein, we may see a change in function (Form dictates Function). Once we have two different versions of a gene that remain for any period of time, we call these forms alleles of the gene.

3. Interaction of Alleles

Mutations result in these new alleles that may function differently. This may manifest in a form of dominance. If one allele codes for a protein and a second suffered a mutation such that no protein is made, we may look for the protein and say that the form that makes the protein is dominant because one copy should be sufficient to get it made.

4. How can Alleles become Pseudogenes?

Sometimes, genes mutate into a nonfunctional allele that has no impact on the organism (e.g. vitamin C synthesis is not required when the animal eats sufficient vitamin C) in this case, there will be no selective pressure against the non-functional allele resulting in more mutations occurring without consequence. Over time, these alleles can be made completely non-functional.  Pseudogenes are the remnants of these old genes that we can find in the DNA, but that are no longer functional due to an accumulation of mutations. (Only if both copies are mutated and there is no functional copy of the gene in the population do we can this a pseudogene).

5. Speciation and Relationships

As time passes, and speciation occurs, we can still see similarities between the genes of the descendent species, whether these are functional, or sometimes even when they are non-functional. My analyzing the similarities between shared genes, it is possible to infer some relationships between species and even quantitate these relationships in a way that can be used to construct a phylogenetic tree.

Image

 
2 Comments

Posted by on February 14, 2014 in Uncategorized

 

Tags: , , , , , , , , ,

I Think… but I do not Know

Darwin, wrote in his ‘B’ notebook in 1837,

Image

And in one instant transformed the way that we all think about life on earth. This simple diagram unified science. It captured Linnaeus’ nomenclature and married it to the fossil progressions that geologist the world over were seeing in the rocks. It redefined how we understand species and laid the framework for a new view of life as being all related at some level, with some organisms sharing more characteristics with their closer relatives and less with those more distant. It allowed scientists more than a hundred years later to recognize that the biochemical foundations of bacteria and yeast and drosophila and humans were all the same. Because we are fundamentally one family. There was no need to identify a genetic code for each species. Instead, we share a common (universal) code of DNA triplets each calling for an Amino Acid in building proteins.

However, there has been a lot of thought about what it really does mean to be a species. Darwin’s book, The Origin of Species, addresses just this point. I raise this question on the first day of my general biology class and my microbiology class. In general biology we eventually rest on the idea that, at least in the larger plants and animals we are used to encountering – and will discuss in the course of our class, the ability to mate with, and produce fertile offspring from is necessary and sufficient to group two animals into the same species. Of course the mule comes up as a near exception necessitating the ‘produce fertile offspring’ clause, but this is a definition we can accept. In microbiology, we are forced, by the nature of the organisms we study, to discard that convenient description. Many micro-organisms replicate asexually and are capable of transferring genes horizontally.

thrashing fish
knowing they’re in a bucket
and not knowing

          -Issa 1819

In the November 1 issue of The Scientist, Axel G. Rossberg, Tim Rogers, and Alan J. McKane tackle the very existence of ‘species.’ Therein, they acknowledge the fact that we use the concept of ‘species’ for our own convenience and consider the possibility (or rater, probability) that the very idea of species delineation may be artificial. The article looks into the variety of life and how the definition must change depending upon the organisms in question and makes us face the assumptions we often take for granted. Click on ‘The Scientist’ below to see the full article.

Image

                Link to the article in The Scientist

 
Leave a comment

Posted by on November 27, 2013 in Uncategorized

 

Tags: , , , , , , , , , , , ,